
Computational Thinking and Coding: a primary progression for programming
Key Concepts, Skills and Approaches to Programming

Computational Thinking Skills For Every Lesson
Each lesson from the Everyone Can Code Teacher Guides has an ‘unplugged’ activity which develops these thinking skills in a real life problem. The second activity applies

these thinking skills to coding skills through the use of Codespark, Tynker or Swift Playgrounds software.
Note: Computational Thinking is NOT Thinking like a computer. It is these:

LOGICAL REASONING
Predicting and analysing

If you set up two computers in the same way, give them the
same instructions (the program) and the same input, you can
pretty much guarantee the same output. This means that they
are predictable. Because of this we can use logical reasoning to
work out why something happens. Part of logical reasoning is
the ability to use existing knowledge to make reliable
predictions about future behaviour of a system.

PATTERN SPOTTING
Spotting and using similarities

Patterns are everywhere, for example, we use weather
patterns to create weather forecasts.
By identifying patterns we can make predictions, create rules
and solve more general problems.
Children need to be able to identify repeating patterns in a list
of commands to understand how this could be made more
efficient using a repeat loop.

DECOMPOSITION
Breaking down into parts

The process of breaking down a problem into smaller
manageable parts is known as decomposition. Decomposition
helps us solve complex problems and manage large projects.

DEBUGGING
Finding and fixing errors

Errors in algorithms and code are called ‘bugs’, and the process
of finding and fixing these is called ‘debugging’. Getting pupils
to take responsibility for thinking through their algorithms and
code, to identify and fix errors is an important part of learning
to think and work like a programmer.

1. Predict what should happen.

2. Test -find out -exactly what happens when a program is run

3. Work out where something has gone wrong.

4. Fix it.

EVALUATING
Making judgements

Evaluation is about making judgements, in an objective and
systematic way where possible.
Children need to evaluate the effectiveness of their programs
in solving a specific task. Pupils should be encouraged to reflect
on the quality of the work that they produce – is it fit for
purpose?

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/
http://barefootcas.org.uk/programme-of-study/work-various-forms-input/inputs/
http://barefootcas.org.uk/programme-of-study/work-various-forms-output/outputs/
http://barefootcas.org.uk/sample-resources/algorithms/

Key Stage 1 Year 3 & 4 Year 5 & 6 Year 5 & 6
Teacher Guide: Teacher Guide:

Teacher Guide:

Teacher Guide:

Lesson Sequence:
0 1 2

..
3 4 5

Lesson Sequence:
Year 3 + 4:

Get Started With Code 1: Lessons 6 7 8 (In Tynker, Space
Cadet)

Then Move To Get Started With Code 2: Lessons 1 2 3 4 5
(Dragon Spells)

Lesson Sequence:
Get Started With Code 2: 6 7 8 9 10

Lesson Sequence:
0 1 2 3 4 5

Apps:
Cycle A

Codespark: The Foos
Create class accounts

Cycle B

Tynker, Space Cadet Lessons

Apps:
Cycle A

Dragon Spells Lessons (Regular Blocks)

Cycle B

Dragon Spells Lesson (Swift Blocks)

Apps:
Cycle A

Dragon Spells Lesson (Swift Blocks)

Cycle B

Download the Learn To Code 1 Playground in
the app.

Child titles the playground with their name and

returns to the same iPad each lesson

Teach the same lesson but apply
the computational thinking skills
to coding using the year group

specific app – explained in plan.

Teach the same lesson in the same app but have Year 3 use
Regular Blocks and Year 4 use Swift Blocks in the same level.

Teach everyone the same computational thinking activity from Puzzles (the unplugged part) and
where appropriate in the skills curriculum ask Year 5s to work in Tynker and Year 6 to work in

Swift Playgrounds.

 FS Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

SE
Q

U
EN

C
IN

G
 S

K
IL

LS

Sequence forwards and
turns e.g. with Beebot

Predict the outcome of a
set of instructions and test
the results.

Use symbols to represent
an instruction e.g. áà for
forward and turn.

Know how to clear the
code

Decomposition by breaking
the code down into chunks
(1 step at a time)

1) (clear)

2) (clear)

3) (clear)

4) (clear

Sequence commands of
forwards, back, left, right
using arrow blocks.

Understand that a sequence
of instructions needs to be
clear, precise and
unambiguous.

Sequence commands
including forwards, back and
turns more efficiently using
blocks.

Understand that some steps
in a sequence can be
reordered but still achieve
the same outcome (flexible
sequence).

Understand that the order in
which instructions are given
will make a difference to the
outcome.

Understand that a sequence
of instructions in computing
is called an Algorithm.

Use decomposition to break
the sequence in to
manageable steps.

Understand how to approach
debugging a program or
algorithm.

Sequence commands in Swift
Code blocks

Use abstraction as a way of
making it easier to think
about problems.

Understand how functions
help us think more
efficiently.

Describe what commands,
functions, debugging and
sequences are.

To read code in Swift Code
blocks

• Repeat loops

• Event handling

• Selection

Be able to assess success of
given instructions and
identify and correct any
errors that occur.

To sequence an algorithm
using written Swift Code.

To read and write Swift
code using:

• Repeat loops

• Functions

• Event handling

• Selection

• Variables

Be able to evaluate the
effectiveness of an
algorithm written by their
peers in class.

R
ES

O
U

R
C

ES

 Get Started With Code 1
Use Codespark: The Foos

Lesson 1 2 3

Get Started With Code 1
Use Tynker (regular blocks)

Lesson 1 2 3

Get Started With Code 2
Tynker (regular blocks)

Lesson 1 2 4

Get Started With Code 2
Tynker (Swift blocks)

Lesson 1 2 4 5 6

Get Started With Code 2:
8 9 10

Puzzles

Lesson 1 , 2, 3

https://enablingenvironments.files.wordpress.com/2015/02/img_2795.png

R
EP

EA
T

LO
O

P
S

(i
te

ra
ti

o
n

)

 Loop a set of commands by a
given amount.

Use a number to specify
movement rather than
repeated commands (e.g. in
The Foos enter á4 rather
than áááá)

Loop a set of commands by a
given amount.

Understand what simple
loops are and how they can
make a program more
efficient.

Identify repeat loops in
everyday life

Understand what loops are
and how they can make a
program more efficient.

Pattern spotting - be able to
identify which commands
need to be repeated and
how many times to achieve a
desired end.

Describe what for loops are.

Use the instruction repeat
until …

Read, write and debug
nested loops (loops within a
loop)

To read and write loops in
Swift code.

R
ES

O
U

R
C

ES
 Get Started With Code 1

Use Codespark: The Foos
Lesson 4

Get Started With Code 1
Use Tynker (regular blocks)
Lesson 4

Get Started With Code 2
Tynker (regular blocks)

Lesson 3

Get Started With Code 2
Tynker (Swift blocks)

Lesson 3

Get Started With Code 2
Tynker (Regular Blocks then
Swift Blocks)
Lesson 8

Puzzles

Lesson 3

EV
EN

T
H

A
N

D
LI

N
G

 S
K

IL
LS

 Know that pressing Go will
make the robot move.

Understand that an event is
an action that causes
something to happen.

Sequence an event in words
ands symbols.

Express an event in words
and symbols.

Be able to create an
animation or game using an
existing template or scaffold

Be able to create an
animation or game

Parallelism – Allow more
than one event to happen at
the same time e.g. having
more than one set of blocks
or instructions running at
the same time.

See Sequencing Strand See Sequencing Strand

R
ES

O
U

R
C

ES

Get Started With Code 1
Use Codespark: The Foos
Lesson 6

Get Started With Code 1
Use Tynker (regular blocks)
Lesson 6

Get Started With Code 1
Use Tynker (Regular Blocks)
Lesson 8

Get Started With Code 1
Tynker (Swift blocks)
Lesson 8

https://enablingenvironments.files.wordpress.com/2015/02/img_2795.png

C
O

N
D

IT
IO

N
A

L
ST

A
TE

M
EN

TS

SK
IL

LS
(s

el
ec

ti
o

n
) Understand that we can

make actions occur only  
under certain conditions.

Use IF statements in
everyday life and in coding

Understand conditional

statements as a way of  
handling different situations
(using If, Then, Else
commands)

Describe what Conditionals
are.

Read conditional statements
as Swift code.

Describe what Conditionals
are.

Read and write conditional
statements as Swift code.

R
ES

O
U

R
C

ES

 Get Started With Code 1
Tynker (Regular Blocks)

Lesson 7

Get Started With Code 2
Tynker (Swift blocks)

Lesson 7

Get Started With Code 2
Tynker (Regular Blocks then
Swift Blocks)
Lesson 9

Puzzles

Lesson 5

V
A

R
IA

B
LE

S
SK

IL
LS

 Understand variables as a
way of working with changing
values.

Describe what variables are
and how to use them in
Swift code.

R
ES

O
U

R
C

ES

 Get Started With Code 2:
Lesson 9 – use Tynker and
Swift Blocks.

Puzzles

Lesson 4

D
ES

IG
N

O

P
P

O
R

TU
N

IT
IE

S Control a Bee Bot on a floor
grid

Control Coji with Emojis

Use Dot and Dash with Go
and Path apps

Control a Bee Bot on a floor
grid

Use Dash robot with Block JR
app

Use Scratch JR app

Control a Bee Bot with Blue-
Bot app

Use Dash robot with Blocky
Jr app

Use Dash robots with Blockly
app

Use Hopscotch App

Use Dash robots with Blockly
app

Use Sphero with Sphero Edu
app

Create code for Artificial
Intelligence software

(Cycle A)

Use BBC Mircobits to
program fairground rides

(Cycle B)

